Isomorphism problems on Hopf algebras and braces

Alan Koch

Agnes Scott College

May 30, 2019

Alan Koch (Agnes Scott College)

1/47

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Joint work with:

Paul Truman

Alan Koch (Agnes Scott College)

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

Outline

Some Isomorphism Problems

- 2 Brace Equivalence and Hopf Algebra Isomorphism Classes
- 3 Opposites, Revisited
- 4 Example: Fixed-Point Free Abelian Maps
- 5 Future Work

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Setup

Let L/K be a Galois extension, group G.

Let $N_1, N_2 \leq \text{Perm}(G)$ be regular, *G*-stable subgroups.

Let
$$H_1 = (L[N_1])^G$$
, $H_2 = (L[N_2])^G$.

Let $\mathfrak{B}_1 = \mathfrak{B}(N_1), \mathfrak{B}_2 = \mathfrak{B}(N_2)$ be the corresponding (skew left) braces.

Two possible isomorphism questions:

1 Are
$$H_1 \cong H_2$$
 as *K*-Hopf algebras?

2 Are
$$\mathfrak{B}_1 \cong \mathfrak{B}_2$$
 as braces?

Also: what, if any, relation is there between the answers to (1) and (2)?

Hopf algebra isomorphism problem

$$N_1, N_2 \leq \text{Perm}(G), \ H_1 = (L[N_1])^G, \ H_2 = (L[N_2])^G.$$

Recall G acts on N_i by conjugation by left translation, i.e.,

$$^{g}\eta = \lambda(g)\eta\lambda(g^{-1}).$$

Theorem (TARP, 2019)

 $H_1 \cong H_2$ iff there exists a G-equivariant isomorphism $\theta : N_1 \to N_2$.

So we require $\theta(g\eta) = g\theta(\eta)$ for all $g \in G, \eta \in N$.

Brace isomorphism problem

Recall that the correspondence:

 $\{N \leq \mathsf{Perm}(G) \text{ regular, } G\text{-stable}\} \Rightarrow \{\text{iso. classes } (B, \cdot, \circ), \ (B, \circ) \cong G\}$ $N \rightarrow [\mathfrak{B}(N)]$

is surjective but not injective.

Can we determine whether $[\mathfrak{B}(N_1)] = [\mathfrak{B}(N_2)]$?

Or, given *N*, can we construct all regular, *G*-stable $M \leq Perm(G)$ with $\mathfrak{B}(M) \cong \mathfrak{B}(N)$?

We will focus on the latter question (whose answer is known).

・ロト ・四ト ・ヨト ・ヨト

First approach

Let $\mathfrak{B} := \mathfrak{B}(N) = (B, \cdot, \circ)$; and let $\varphi \in \operatorname{Aut}(B, \circ) \cong \operatorname{Aut}(G)$. Define a binary operation \cdot_{φ} on *B* by

$$\mathbf{x} \cdot_{\varphi} \mathbf{y} = \varphi^{-1}(\varphi(\mathbf{x}) \cdot \varphi(\mathbf{y})).$$

Then (B, \cdot_{φ}) is a group. Moreover,

$$\begin{aligned} x \circ (y \cdot_{\varphi} z) &= x \circ \varphi^{-1}(\varphi(y) \cdot \varphi(z)) \\ &= \varphi^{-1} \left(\varphi(x) \circ (\varphi(y) \cdot \varphi(z)) \right) \\ &= \varphi^{-1} \left(\left(\varphi(x) \circ \varphi(y) \right) \cdot \varphi(x^{-1}) \cdot \left(\varphi(x) \circ \varphi(z) \right) \right) \\ &= \varphi^{-1} \left(\left(\varphi(x \circ y) \right) \cdot \varphi(x^{-1}) \cdot \left(\varphi(x \circ z) \right) \right) \\ &= (x \circ y) \cdot_{\varphi} x^{-1} \cdot_{\varphi} (x \circ z), \end{aligned}$$

hence $\mathfrak{B}_{\varphi} := (B, \cdot_{\varphi}, \circ)$ is a brace.

イロト 不得 トイヨト イヨト 二日

(B,\cdot,\circ) vs (B,\cdot_{arphi},\circ)

Recall the construction of $\mathfrak{B}(N)$: $(B, \cdot) = N$, and

$$x \circ y = a^{-1}(a(x) *_G a(y))$$

where $a: N \to G$ is given by $a(\eta) = \eta[1_G]$.

Given an arbitrary (B, \cdot, \circ) we can construct an $N \leq \text{Perm}(B, \circ)$. Set $G = (B, \circ)$, and let $N \leq \text{Perm}(G)$ be given by

$$\eta[g] = \eta \cdot g, \ g \in G, \eta \in N.$$

In this setting, $(B, \cdot_{\varphi}, \circ)$ corresponds to the regular subgroup $N_{\varphi} \leq \operatorname{Perm}(G, \circ)$ with

$$\eta_{\varphi}[\boldsymbol{g}] = \eta \cdot_{\varphi} \boldsymbol{g} = \varphi^{-1}(\varphi(\eta) \cdot \varphi(\boldsymbol{g})),$$

and $N_{\varphi} \neq N$ unless φ respects \cdot , i.e., is a brace automorphism.

Second approach

Given $N \leq \text{Perm}(G)$, $\varphi \in \text{Aut}(G)$, define

$$N_arphi = arphi N arphi^{-1}$$
 .

Since $\varphi \eta \varphi^{-1}[g] = g$ iff $\eta[\varphi^{-1}(g)] = \varphi^{-1}(g)$, $N_{\varphi} \leq \text{Perm}(G)$ is regular. Also, N_{φ} is *G*-stable:

$$\begin{split} \lambda(g) \mathcal{N}_{\varphi} \lambda(g^{-1}) &= \lambda(g) \varphi \mathcal{N} \varphi^{-1} \lambda(g^{-1}) \\ &= \varphi \left(\lambda(\varphi^{-1}(g)) \mathcal{N} \lambda(\varphi^{-1}(g^{-1})) \right) \varphi^{-1} \\ &= \varphi \left(\lambda(h) \mathcal{N} \lambda(h^{-1}) \right) \varphi^{-1}, \ h = \varphi^{-1}(g) \\ &= \varphi \mathcal{N} \varphi^{-1} \\ &= \mathcal{N}_{\varphi}. \end{split}$$

[Byott] The number of Hopf-Galois structures corresponding to a given brace (B, \cdot, \circ) is

 $|\operatorname{Aut}(B,\circ)/\operatorname{Aut}(B,\cdot,\circ)|$.

[Zenouz] Given a regular, *G*-stable subgroup $N \leq \text{Perm}(G)$, the other regular, *G*-stable subgroups of Perm(G) giving the same brace are of the form N_{φ} , $\varphi \in \text{Aut}(G)$.

Outline

2

Brace Equivalence and Hopf Algebra Isomorphism Classes

- 3 Opposites, Revisited
- 4 Example: Fixed-Point Free Abelian Maps
- 5 Future Work

Equivalences

Let N_1 , N_2 be regular, *G*-stable subgroups of Perm(*G*).

Recall N_1 and N_2 are *G*-isomorphic iff $L[N_1]^G \cong L[N_2]^G$ as *K*-Hopf algebras.

We say N_1 and N_2 are:

- brace equivalent if $\mathfrak{B}(N_1) \cong \mathfrak{B}(N_2)$
- *G-isomorphic* if there is a *G*-equivariant isomorphism $N_1 \rightarrow N_2$.

For either equivalence it is necessary, not sufficient, that $N_1 \cong N_2$ as groups.

イロト 不得 トイヨト イヨト

Equivalences

- brace equivalent: $\mathfrak{B}(N_1) \cong \mathfrak{B}(N_2)$
- *G-isomorphic*: there is a *G*-equivariant isomorphism $N_1 \rightarrow N_2$.

Given $N \leq \text{Perm}(G)$ regular and *G*-stable, let BEC(N) denote the brace equivalence class of regular, *G*-stable subgroups.

Then

$$\mathsf{BEC}(N) = \{N_{\varphi} : \varphi \in \mathsf{Aut}(G)\} / \sim,$$

where $N_{\varphi_1} \sim N_{\varphi_2}$ if $\varphi_1 = \varphi_2 \varphi$ for some $\varphi \in \operatorname{Aut}(\mathfrak{B}(N)) \leq \operatorname{Aut}(G)$.

An example

Let $G = D_p = \langle r, s : r^p = s^2 = rsrs = 1_G \rangle$, *p* an odd prime.

[Byott] There are p + 2 regular, *G*-stable subgroups of Perm(*G*):

- $\lambda(G) \cong D_{\rho}$ (left representation)
- $\rho(G) \cong D_{\rho}$ (right representation)

•
$$N_c = \langle \lambda(r) \rho(r^c s) \rangle \cong C_{2p}, \ 0 \le c \le p-1.$$

 $\mathfrak{B}(\lambda(G))$ is the trivial brace, so $\operatorname{Aut}(B,\cdot,\circ) = \operatorname{Aut}(B,\circ)$ and

 $\mathsf{BEC}(\lambda(G)) = \{\lambda(G)\}.$

Since $\rho(G) \ncong N_c$, BEC $(\rho(G)) = \{\rho(G)\}$.

$\lambda(G), \rho(G), N_c \cong C_{2p}, \ 0 \le c \le p-1$

Pick *c*, and write $\mathfrak{B}(N_c) = (B, \cdot, \circ)$.

Since $\operatorname{Aut}(B, \cdot, \circ) \leq \operatorname{Aut}(B, \cdot) \cong C_{p-1}$ we know $|\operatorname{Aut}(B, \cdot, \circ)| \leq p-1$.

Since $|\operatorname{Aut}(B,\circ)| = p(p-1)$ we have

$$|\operatorname{BEC}(N_c)| \geq rac{p(p-1)}{p-1} = p,$$

and since clearly $|BEC(N_c)| \le p$ we have equality, hence

$$\mathsf{BEC}(N_c) = \{N_0, N_1, \dots, N_{p-1}\}$$

and we have three brace equivalence classes in total.

The three braces with $(B, \circ) \cong D_p$:

(D_p, \cdot, \cdot)

2
$$(D_p, \cdot', \cdot)$$
 with $x \cdot' y = yx$

3
$$(\langle \eta \rangle, \cdot, \circ), \ |\eta| = 2p$$
 under \cdot , and
 $\eta^i \circ \eta^j = \eta^{i+(-1)^{ij}} = \begin{cases} \eta^{i+j} & i \text{ even} \\ \eta^{i-j} & i \text{ odd} \end{cases}$.

æ

<ロ> <問> <問> < 回> < 回> 、

$\{\lambda(G)\}, \{\rho(G)\}, \{N_c\}$

In this example, we also know the Hopf algebra isomorphism classes.

Let
$$H_{\lambda} = L[\lambda(G)]^G$$
 and $H_c = L[N_c]^G$, $0 \le c \le p-1$.

Also, write $\eta_c = \lambda(r)\rho(r^c s)$ (so $N_c = \langle \eta_c \rangle$).

Then:

- *K*[*G*] is in a class by itself.
- H_{λ} is in a class by itself.
- For all $0 \le c, d \le p 1, H_c \cong H_d$: since

$${}^{r}\eta_{c} = \lambda(r)\lambda(r)\rho(r^{c}s)\lambda(r^{-1}) = \lambda(r)\rho(r^{c}s) = \eta_{c}$$
$${}^{s}\eta_{c} = \lambda(s)\lambda(r)\rho(r^{c}s)\lambda(s^{-1}) = \lambda(r^{-1})\rho(r^{c}s) = \eta_{c}^{-1}$$

the map $N_c \rightarrow N_d$, $\eta_c \mapsto \eta_d$ is a *G*-equivariant isomorphism.

$\{\lambda(G)\}, \{\rho(G)\}, \{N_c\} \text{ and } H_{\lambda}, K[G], K[N_0]^G$

In this case, "brace equivalent" is the same thing as "G-isomorphic".

Question. Is this always true?

Answer. No.

Example

Let $G = D_4$, let

$$\eta_r = \lambda(r)\rho(s), \ \eta_s = \lambda(s),$$

and let $N = \langle \eta_r, \eta_s \rangle$. Then the map $\theta : \lambda(G) \to N, \theta(\lambda(r^i s^j)) = \eta_r^i \eta_s^j$ is an isomorphism, and since

$$^{r}\lambda(r) = \lambda(r)$$
 $^{s}\lambda(r) = \lambda(r)^{-1}$ $^{r}\lambda(s) = \lambda(r)^{2}\lambda(s)$ $^{s}\lambda(s) = \lambda(s)$
 $^{r}\eta_{r} = \eta_{r}$ $^{s}\eta_{r} = \eta_{r}^{-1}$ $^{r}\eta_{s} = \eta_{r}^{2}\eta_{s}$ $^{s}\eta_{s} = \eta_{s}$

we see that θ is *G*-equivariant. Thus, $\lambda(G)$ is *G*-isomorphic to *N*. But BEC($\lambda(G)$) = { $\lambda(G)$ } so they are not brace equivalent.

Question. Does brace equivalence imply G-isomorphic?

Answer. Also, no.

Example

Let
$$G = \langle a, b : a^4 = abab^{-1} = 1, a^2 = b^2 \rangle \cong Q_8$$
, and let

$$N_1 = \langle \lambda(a), \lambda(ab)\rho(a) \rangle, \ N_2 = \langle \lambda(b), \lambda(ab)\rho(b) \rangle.$$

Both N_1 and N_2 are regular, *G*-stable, but not *G*-isomorphic since *a* acts trivially on N_1 and not N_2 . [Taylor & Truman, 2019]. But $\varphi : G \to G$, $\varphi(a) = b$, $\varphi(b) = a$ is an automorphism, and

$$arphi\lambda(a)arphi^{-1}[a] = a^3b \qquad arphi\lambda(a)arphi^{-1}[b] = a^2 \ arphi\lambda(ab)
ho(a)arphi^{-1}[a] = a^2 \qquad arphi\lambda(ab)
ho(a)arphi^{-1}[b] = a^3b$$

Thus N_1 and N_2 are brace equivalent since $\varphi N_1 \varphi^{-1} = N_2$:

 $\varphi\lambda(a)\varphi^{-1} = (\lambda(b))^3 \in N_2, \ \varphi\lambda(ab)\rho(a)\varphi^{-1} = \lambda(b)^2(\lambda(ab)\rho(b)) \in N_2.$

A special case

Let $\varphi \in \text{Inn}(G)$, say $\varphi(g) = hgh^{-1}$. Let $\eta \in N$.

Then

$$\varphi \eta \varphi^{-1}[g] = h(\eta[h^{-1}gh])h^{-1}$$
$$= \rho(h)\lambda(h)\eta\lambda(h^{-1})\rho(h^{-1})[g].$$

Since *N* is *G*-stable, ${}^{h}\eta = \lambda(h)\eta\lambda(h^{-1}) \in N$.

So
$$\varphi \eta \varphi^{-1} = \rho(h) (h\eta) \rho(h^{-1})$$
 and $N_{\varphi} = \rho(h) N \rho(h^{-1})$.

Since $\theta : N \to N_{\varphi}$, $\theta(\eta) = \rho(h)\eta\rho(h^{-1})$ is *G*-invariant [TARP19], we get that *N* and N_{φ} are *G*-isomorphic.

Proposition (KT)

If Aut(G) = Inn(G), then brace equivalence implies isomorphic as Hopf algebras.

Furthermore, if N_1 and N_2 are in the same brace equivalence class, then

$$N_2 = \rho(g) N_1 \rho(g^{-1})$$

for some $g \in G$.

An example: $(B, \circ) \cong (B, \cdot) = S_n, n \ge 5, n \ne 6$

There are two (opposite) families of regular, *G*-stable subgroups, denoted $\{N_{\tau}\}$ and $\{N'_{\tau}\}$, $\tau \in A_n$, $\tau^2 = 1$. Their \circ brace operations are:

$$\sigma \circ \pi = \begin{cases} \sigma \pi & \sigma \in \mathbf{A}_n \\ \sigma \tau \pi \tau & \sigma \notin \mathbf{A}_n \end{cases}, \ \sigma \circ' \pi = \begin{cases} \pi \sigma & \sigma \in \mathbf{A}_n \\ \tau \pi \tau \sigma & \sigma \notin \mathbf{A}_n \end{cases}$$

Denote these braces \mathfrak{B}_{τ} and \mathfrak{B}'_{τ} respectively. Recall $\mathfrak{B}_{\tau} \not\cong \mathfrak{B}'_{\tau}$. Suppose $\tau_1, \tau_2 \in A_n$ are conjugate. Pick $\delta \in S_n$ such that $\delta \tau_1 \delta^{-1} = \tau_2$. Let $\phi : \mathfrak{B}_{\tau_1} \to \mathfrak{B}_{\tau_2}$ be the bijection given by $\phi(\gamma) = \delta \gamma \delta^{-1}$. Then ϕ clearly preserves \cdot , and $\phi(\sigma \circ \pi) = \phi(\sigma) \circ \phi(\pi)$ for $\sigma \in A_n$. For $\sigma \notin A_n$,

$$\phi(\sigma \circ \pi) = \phi(\sigma\tau_1 \pi \tau_1)$$

= $\delta \sigma \tau_1 \pi \tau_1 \delta^{-1}$
= $\delta \sigma(\delta^{-1}\delta) \tau_1(\delta^{-1}\delta) \pi(\delta^{-1}\delta) \tau_1 \delta^{-1}$
= $(\delta \sigma \delta^{-1}) \tau_2(\delta \pi \delta^{-1}) \tau_2 = \phi(\sigma) \circ \phi(\pi).$

$\mathfrak{B}_{\tau_1} \cong \mathfrak{B}_{\tau_2}$ if τ_1, τ_2 same cycle type: a special case

In particular, the brace equivalence classes for $G \cong N = S_7$ are:

$$\{\lambda(G)\}, \{\rho(G)\}, \{N_{\tau}: \tau^2 = 1, \tau \neq 1\}, \{N_{\tau}': \tau^2 = 1, \tau \neq 1\},$$

and all Hopf algebras which give a Hopf-Galois structure on L/K are isomorphic to one of the following:

- H_{λ} , which acts uniquely.
- \bigcirc K[G], which acts uniquely.
- $K[N_{(12)(34)}]^G$, which acts in 105 ways.
- $K[N'_{(12)(34)}]^G$, which acts in 105 ways.

G-isomorphism and brace equivalence: generally?

Proposition (KT)

Let $N_1, N_2 \leq \text{Perm}(G)$ be regular and G-stable. Suppose $\theta : N_1 \to N_2$ is G-equivariant, and $\varphi \in \text{Aut}(G)$. Then $\varphi \theta \varphi^{-1} : \varphi N_1 \varphi^{-1} \to \varphi N_2 \varphi^{-1}$ is G-equivariant.

So if N_1 and N_2 are *G*-isomorphic, then every element in BEC(N_1) is *G*-isomorphic to some element in BEC(N_2).

(This does not imply the equivalence classes are the same size.)

イロト 不得 トイヨト イヨト

Back to the dihedral

Example

Let $G = D_4$, let

$$\eta_r = \lambda(r)\rho(s), \ \eta_s = \lambda(s),$$

and let $N = \langle \eta_r, \eta_s \rangle$. We have seen that $\lambda(G)$ and N are G-isomorphic. Since $BEC(\lambda(G)) = \{\lambda(G)\}$, any group in BEC(N) must be G-isomorphic to $\lambda(G)$, hence to N, and the corresponding Hopf algebras are all isomorphic.

Generally, if a brace equivalence class has an element *G*-isomorphic to $\lambda(G)$, then all its elements are *G*-isomorphic.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Example: Braces Of Order 2p

There are two possibilities for G = Gal(L/K), namely C_{2p} and D_p .

The case $G = D_{\rho}$ is handled earlier, giving three brace equivalence classes, corresponding to $\lambda(D_{\rho}), \ \rho(D_{\rho}), \ N_0 = \langle \lambda(r)\rho(s) \rangle$.

Suppose $G = C_{2p}$. Then *N* can be cyclic or dihedral.

If
$$N \cong C_{2\rho}$$
 then $N = \rho(C_{2\rho})$ and $BEC(\rho(C_{2\rho})) = \{\rho(C_{2\rho})\}.$

If $N = \langle r, s \rangle \cong D_p$ then there are two Hopf-Galois structures [Byott], and they are opposite each other. One brace $\mathfrak{B} = (B, \cdot, \circ)$ is given by $(B, \cdot) = D_p$ and

$$r^i s^j \circ r^k s^l = r^{i+k} s^{j+l}$$

If $\phi \in \operatorname{Aut}(B, \circ)$ then $\phi(r) = r^d$ and $\phi(s) = s$ for some $1 \le d \le p - 1$. These preserve the \cdot operation as well, hence $\operatorname{Aut}(B, \cdot, \circ) = \operatorname{Aut}(G)$ and $\operatorname{BEC}(\mathfrak{B}) = \{\mathfrak{B}\}.$

Thus, there are 6 braces with 2*p* elements.

Braces of order 2p

 $\bigcirc (D_p,\cdot,\cdot)$

2
$$(D_p, \cdot', \cdot)$$
 with $x \cdot' y = yx$.

3
$$(\langle\eta
angle,\cdot,\circ),\;|\eta|=2p$$
 under $\cdot,$ and

$$\eta^{i} \circ \eta^{j} = \eta^{i+(-1)^{i}j} = \left\{ egin{array}{cc} \eta^{i+j} & i ext{ even} \ \eta^{i-j} & i ext{ odd} \end{array}
ight.$$

.

イロト イヨト イヨト イヨト

- (C_{2p}, ·, ·) (corresponding to N = ρ(C_{2p}).
 (D_p, ·, ∘) with rⁱs^j ∘ r^ks^l = r^{i+k}s^{j+l}.
- **(** D_p , \cdot' , \circ) the opposite brace to the above.

Outline

2 Brace Equivalence and Hopf Algebra Isomorphism Classes

Opposites, Revisited

4 Example: Fixed-Point Free Abelian Maps

5 Future Work

Recall...

For $\mathfrak{B} = (B, \cdot, \circ)$ we define its opposite to be the brace $\mathfrak{B}' = (B, \cdot', \circ)$ with $x \cdot y = yx$.

If $N' = \text{Cent}_{\text{Perm}(G)} N$, then $\mathfrak{B}(N') = \mathfrak{B}(N)'$. Given N, we claim |BEC(N)| = |BEC(N')|. In fact, for $\varphi \in \text{Aut}(G), \eta \in N, \eta' \in N'$,

$$(\varphi\eta'\varphi^{-1})(\varphi\eta\varphi^{-1})(\varphi\eta'^{-1}\varphi^{-1}) = \varphi\eta'\eta\eta'^{-1}\varphi^{-1} = \varphi\eta\varphi^{-1}$$

and so:

Proposition (KT)

We have $(N_{\varphi})' = (N')_{\varphi}$.

Generally, $BEC(N_1) = BEC(N_2)$ iff $BEC(N'_1) = BEC(N'_2)$.

In other words, each brace equivalence class has a well-defined opposite class (of the same size).

Alan Koch (Agnes Scott College)

Self-opposite brace equivalence classes

Proposition (KT) We have $(N_{\varphi})' = (N')_{\varphi}$.

We have seen that it is possible for $\mathfrak{B} \cong \mathfrak{B}'$, i.e., for \mathfrak{B} to be self-opposite.

< 日 > < 同 > < 回 > < 回 > < □ > <

Outline

3 Opposites, Revisited

5 Future Work

Alan Koch (Agnes Scott College)

イロト イポト イヨト イヨト

FPF abelian: review and notation

Recall that a *fixed-point free abelian* map $\psi : G \to G$ is an endomorphism such that $\psi(xy) = \psi(yx)$ for all $x, y \in G$; and $\psi(x) = x$ iff $x = 1_G$.

Let $\mathcal{F}(G)$ denote the set of fixed-point free abelian maps on *G*.

Each $\psi \in \mathcal{F}(G)$ determines a Hopf-Galois structure as follows. For $g \in G$, let

$$\eta_{g}^{\psi} = \eta_{g} := \lambda(g)
ho(\psi(g)) \in \mathsf{Perm}(G)$$

Let $N_{\psi} = \{\eta_g : g \in G\}$. Then $\eta_{gh} = \eta_g \eta_h$ and $N_{\psi} \leq \text{Perm}(G)$.

Note $N_{\psi} \cong G$. It can be shown that N_{ψ} is regular and *G*-stable, hence gives a Hopf-Galois structure.

The correspondence $\mathcal{F}(G) \rightarrow \{\text{HGS on } L/K\}$ is neither injective nor surjective in general.

An injective correspondence

$\mathcal{F}(G) \rightarrow \{ \text{ HGS on } L/K \}$

 $\psi_1, \psi_2 \in \mathcal{F}(G)$ give the same HGS iff $\psi_2 = \psi_1 \zeta$ for some $\zeta \in \mathcal{F}(G)$ such that $\zeta(G) \leq Z(G)$. Let $\mathcal{Z}(G)$ be the group of such maps.

We get an injective correspondence $\mathcal{F}(G)/\mathcal{Z}(G) \rightarrow \{\text{HGS on } L/K\}$. [Childs]

$\eta_{g} = \lambda(g)\rho(\psi(g))$

The map $\theta : \lambda(G) \to N_{\psi}$ given by $\theta(g) = \eta_g$ is an isomorphism, *G*-stable since

$$\begin{split} \theta(\ {}^{g}\lambda(h)) &= \ \theta(\lambda(ghg^{-1})) = \eta_{ghg^{-1}}, \\ {}^{g}\theta(h) &= \ {}^{g}\eta_h \\ &= \lambda(g)\lambda(h)\rho(\psi(h))\lambda(g^{-1}) \\ &= \lambda(ghg^{-1})\rho(\psi(ghg^{-1})) \\ &= \eta_{ghg^{-1}}. \end{split}$$

Thus, every Hopf algebra arising from a fixed-point free map is necessarily isomorphic to H_{λ} . [Childs, TARP19]

イロト 不得 トイヨト イヨト

Brace equivalence

Question. What does $BEC(N_{\psi})$ look like?

Short, unsatisfying answer. BEC(N_{ψ}) = { $\varphi N_{\psi} \varphi^{-1} : \varphi \in Aut(G)$ }.

Longer, more satisfying answer. For $\varphi \in Aut(G), \eta_g \in N_{\psi}$ we have

$$egin{aligned} &arphi \eta_{g} arphi^{-1}[h] = arphi \left(\lambda(g)
ho(\psi(g))[arphi^{-1}(h)]
ight) \ &= arphi \left(g arphi^{-1}(h) \psi(g^{-1})
ight) \ &= arphi(g) h arphi(\psi(g^{-1})) \ &= arphi(g) h arphi(\psi(g^{-1}))) \ &= arphi(g) h arphi(\psi(arphi^{-1}(arphi(g^{-1})))) \ &= \lambda(arphi(g))
ho(arphi\psiarphi^{-1}(arphi(g)))[h]. \end{aligned}$$

$$\varphi \eta_{\mathcal{G}} \varphi^{-1} = \lambda(\varphi(\mathcal{G})) \rho(\varphi \psi \varphi^{-1}(\varphi(\mathcal{G})))$$

Claim. $\varphi\psi\varphi^{-1}\in\mathcal{F}(G)$.

$$\begin{split} \varphi\psi\varphi^{-1}(gh) &= \varphi(\psi(\varphi^{-1}(g)\varphi^{-1}(h))) = \varphi(\psi(\varphi^{-1}(h)\varphi^{-1}(g))) = \varphi\psi\varphi^{-1}(hg) \\ \varphi\psi\varphi^{-1}(g) &= g \Rightarrow \psi(\varphi^{-1}(g)) = \varphi^{-1}(g) \Rightarrow g = 1_G. \end{split}$$

Thus,
$$arphi\eta^\psi_garphi^{-1}=\eta^{arphi\psiarphi^{-1}}_{arphi(g)}$$
 and

Proposition (KT)

The brace equivalence class for any N arising from a fixed-point free abelian map consists entirely of subgroups of Perm(G) arising from fixed-point free abelian maps.

Proposition (KT)

The brace equivalence class for any N arising from a fixed-point free abelian map consists entirely of subgroups of Perm(G) arising from fixed-point free abelian maps.

Recall that if N_{ψ_1} and N_{ψ_2} are both *G*-isomorphic (they are) and brace equivalent, $N_{\psi_2} = \rho(x)N_{\psi_1}\rho(x^{-1})$ for some $x \in G$.

Thus, N_{ψ_1} and N_{ψ_2} are brace equivalent iff there is an $x \in G$ such that for all $g \in G$ there is an $h \in G$ with

$$\rho(x)\lambda(g)\rho(\psi_1(g^{-1}))\rho(x^{-1}) = \lambda(g)\rho(x\psi_1(g^{-1})x^{-1}) = \lambda(h)\rho(\psi_2(h^{-1})).$$

ヘロト ヘ回ト ヘヨト ヘヨト

Since the action of Aut(G) restricts to an action on $\mathcal{Z}(G)$:

Aut(G) acts on $\mathcal{F}(G)/\mathcal{Z}(G)$ via conjugation, and the orbits are brace equivalence classes.

<ロ> <問> <問> < 回> < 回> 、

An example

Let $D_8 = \langle r, s : r^8 = s^2 = rsrs = 1 \rangle$. There are 5 Hopf Galois structures given by fixed-point free maps:

[Childs]

Write $N_i = N_{\psi_i}$.

Note $\varphi \psi \varphi^{-1}(G) = \varphi(\psi(G)) \cong \psi(G)$.

So $BEC(N_0) = \{N_0\}, BEC(N_2) = \{N_2\}.$

An example (cont'd)

	ψ_1	ψ_{3}	$\psi_{ extsf{4}}$
r	S	rs	r ³ s
S	1 _G	rs	r ³ s
$\psi(G)$	$\langle s angle$	$\langle \textit{rs} \rangle$	$\langle r^3 s \rangle$

Let $\varphi \in \operatorname{Aut}(D_8)$ be given by $\varphi(r) = r$, $\varphi(s) = rs$. Then $\varphi \psi_1 \varphi^{-1} = \psi_3$.

Also, the map $\varphi(r) = r^{-1}$, $\varphi(s) = s$ satisfies $\varphi \psi_3 \varphi^{-1} = \psi_4$, so BEC(N_1) = { N_1, N_3, N_4 }.

Alan Koch (Agnes Scott College)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

- 2 Brace Equivalence and Hopf Algebra Isomorphism Classes
- 3 Opposites, Revisited
- 4 Example: Fixed-Point Free Abelian Maps

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A closer look at S_n

Earlier, we showed that, in the case $G \cong N = S_n$, $n \ge 5$, $n \ne 6$, HGS corresponding to the same choice $\tau \in A_n$, $\tau^2 = 1$ where $\sigma \circ \pi = \sigma \pi, \sigma \in A_n$, $\sigma \circ \pi = \sigma \tau \pi \tau, \sigma \notin A_n$ are all isomorphic. (We explicitly looked at S_7 .)

Is the converse true? If N_{τ_1} and N_{τ_2} are brace equivalent, must τ_1 and τ_2 be conjugate?

Conjecture. Yes (subject to the restrictions on *n* above).

If so, both the brace equivalence problem and the Hopf algebra isomorphism problem for $G \cong N = S_n$ would be completely known (modulo a few small, computable cases).

There is another class of regular, *G*-stable subgroup of Perm(G) with $N \cong A_n \times C_2$ which probably exhibits similar behavior.

A closer look at fixed-point free abelian

In the dihedral example we considered

	ψ_{1}	ψ_{3}	ψ_{4}
r	S	rs	r ³ s
S	1 _G	rs	r ³ s
$\psi(G)$	$\langle \pmb{s} angle$	$\langle \textit{rs} \rangle$	$\langle r^3 s \rangle$

and showed that these were all are brace equivalent.

Is it true that, in general, if $\psi(G) \cong \chi(G)$ then N_{ψ} and N_{χ} are brace equivalent?

Conjecture. No.

< 日 > < 同 > < 回 > < 回 > < □ > <

Our work in braces was motivated in determining when N and N' are G-isomorphic.

Is any of this helping?

Note we have shown that $(N_{\varphi})' = N'_{\varphi}$, so *N* and *N'* are *G*-isomorphic iff N_{φ} and N'_{φ} are.

This separates the problem into "clusters".

The original problem-an approach?

N is *G*-isomorphic to *N'* iff N_{φ_i} is *G*-isomorphic to N'_{φ_i} for all *i*.

Perhaps there is a "nice" choice of N_{φ_i} for which it is obvious that N_{φ_i} and N'_{φ_i} are not *G*-isomorphic?

Thank you.

Alan Koch (Agnes Scott College)

æ

<ロン <回と < 回と < 回と < 回と